WORKING TOWARD MORE SUSTAINABLE FIRE SAFETY SOLUTIONS

Maggie Baumann pinfa North America CAMX 2020- Virtual Program

PRESENTATION CONTENT

- I. Who is Pinfa
- II. The Role of Fire Retardants
- **III.** Flame Retardant Additives
- IV. Flame Retardant Innovation (2000-2020)
- V. FRs: Federal/state law & regulation (USA/Canada)
- VI. Achieving Fire Safety while protecting humans/environment
- VII. Future opportunities for sustainable solutions

Phosphorus, Inorganic And Nitrogen Flame Retardant Association (pin*f*a) (EU, Asia, NA)

Who is Pinfa? Pinfa is an organization of member companies producers, formulators

and users of PIN FRs.

FLAME RETARDANTS IN ELECTRIC AND ELECTRONIC

lalogenated phosphorus, inorganic hi**trogen (PIN) flame retardants**

Innovative and Sustainable

APPLICATIONS

pinfa

Your Resource for Flame Retardant Technical and **Market Information**

PIN FR Product Selector: <u>www.pinfa.eu/product-selector/</u> - information for over 65 commercial NHFR products

FR Application Brochures (markets: E&E, B&C, Transportation): www.pinfa.eu/media-events/brochures-publications/

Free Monthly Newsletter (FR materials/Market developments/Regulatory updates): Sign up @ www.pinfa.eu/media-events/newsletter/

Sponsorship and Educational Outreach to Related Associations, Markets and Industry Events -**Networking opportunities**

SPE, SAMPE, ACMA, PIA, USGBC, GEC, ACS, AMI, Other

Industry Workshops with Market Focus

Technical Training via NHFR Formulators Workshop

For more info please visit www.pinfa-na.org

pinfa-na PROTECTION OF HUMAN LIFE AND PROPERTY

Meeting fire safety regulations/codes/standards - Options:

1. Engineering solutions

2. Inherently flame retardant materials i.e. materials not easily ignited or readily combustible - - certain phenolics, PEEK, PTFE (Teflon), LCP, PPS, aromatic polyamide (Kevlar, Nomex)

or....

3. Using flame retardant additives

SPECIALTY CHEMICALS INDUSTRY & FRS

Specialty Chemicals (global): \$556B* (2017)Flame Retardants(global): \$7.3B** (2017)

Specialty Chemicals - a mature market

- ***CAGR in Net Income (last 5 yrs)
- Specialty Chemicals: 2.6%
- Beverage (alcoholic): **2.9%**
- Brokerage/Investment Banking: 19.3%
- Semiconductor: 24.1%
- Telecom (wireless): 52.4%

Specialty Chemical Market Challenges

- Declining margins, commoditization
- Contraction (mergers &acquisition)

Flame retardant Additives are growing 6% annually in the Automotive market- overall growth-3.6-3.7% compound Annual growth rate 2020-2027 (Grandviewresearch.com)

Source(s):

* MarketWatch, 1/3/20 press release ** VisionGain 8/15/17 press release *** New York University, Stern School of Business, updated 1/20

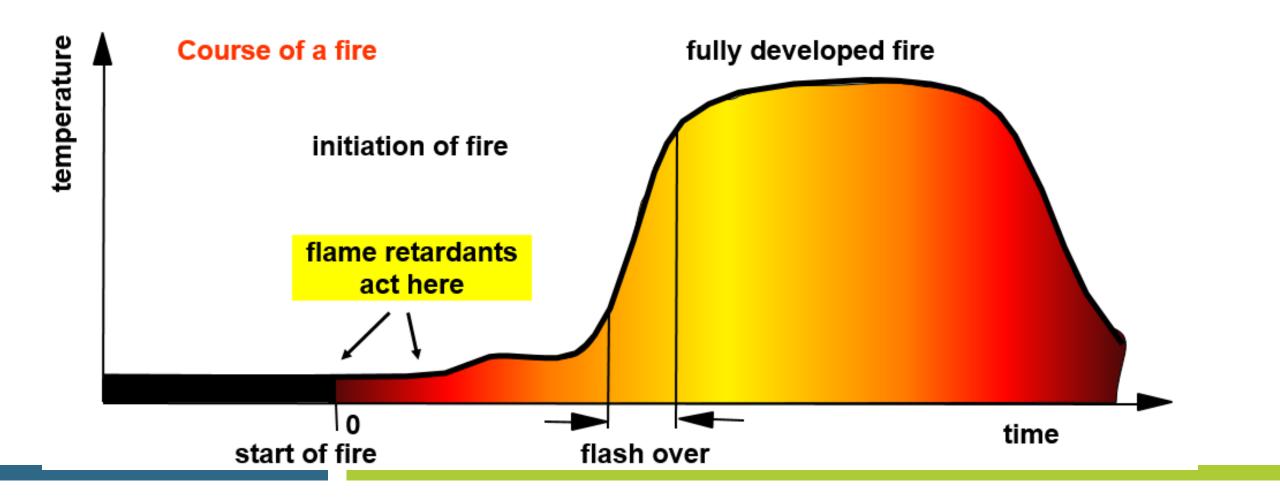
FLAME RETARDANT ADDITIVES: NEW PRODUCT

COMMERCIALIZATION- CHALLENGES AND TIMELINE

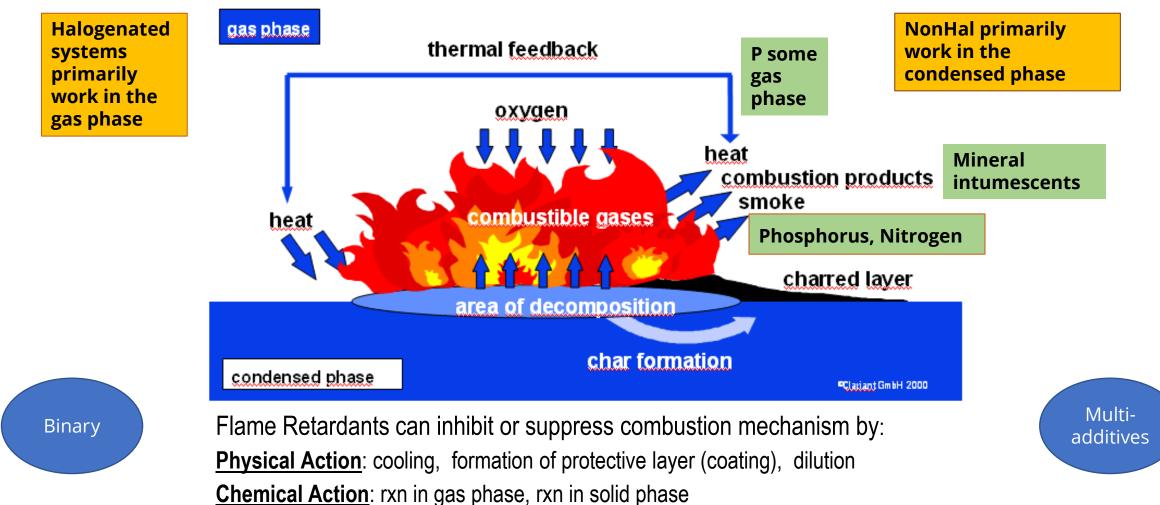
1) Focused R&D w/market "need" in mind. Homework done up front!! (re. cost, non-exotic rms, .etc.) \$\$\$

2) Screen new molecules/cmpds for FR efficacy/synergies (resin dependent). Mfg feasibility?
Additional question: is this a new chemistry/polymer- recognition that education will also be a component
3) Explore possible application(s) w/customer collaboration: E&E, B&C, transportation

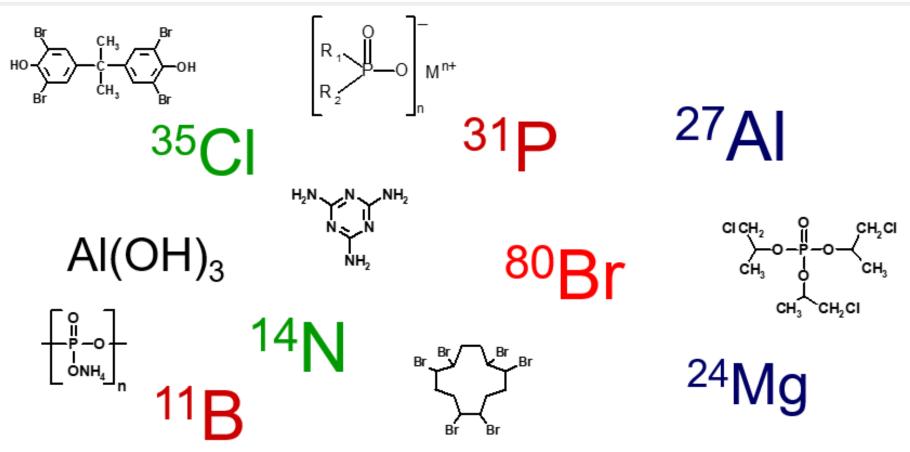
- Make sure you understand needs as well as value of the improvement.
 4) Patent protection for chemistry/application IP \$\$
- 5) **Pilot plant production** (AR approval) or 3rd party toll mfg \$\$\$
- 6) **Global registration** of new chemical \$\$\$
- 7) Commercial plant production (AR approval/license) \$\$\$\$**



- 8) On-spec quality shipments to customer, ongoing tech support & product improvement
- 9) Tech/Sales/Marketing: ongoing search for new applications & increased sales \$\$\$\$

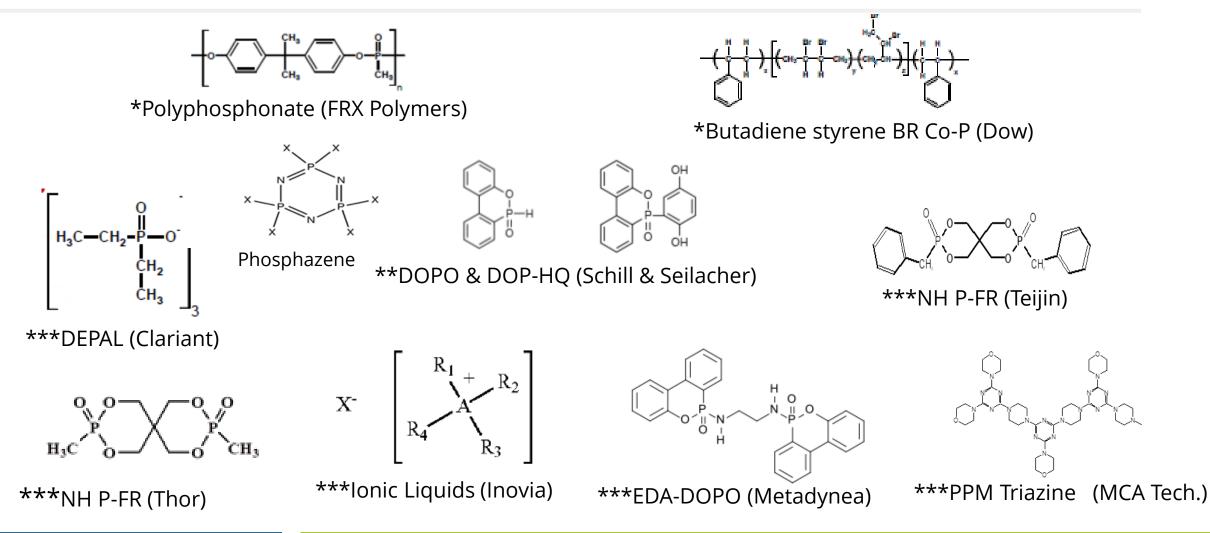


FR BENEFITS: HELP PREVENT IGNITION, SLOW FLAME


SPREAD & PROLONG ESCAPE TIME

COMBUSTION OF PLASTICS

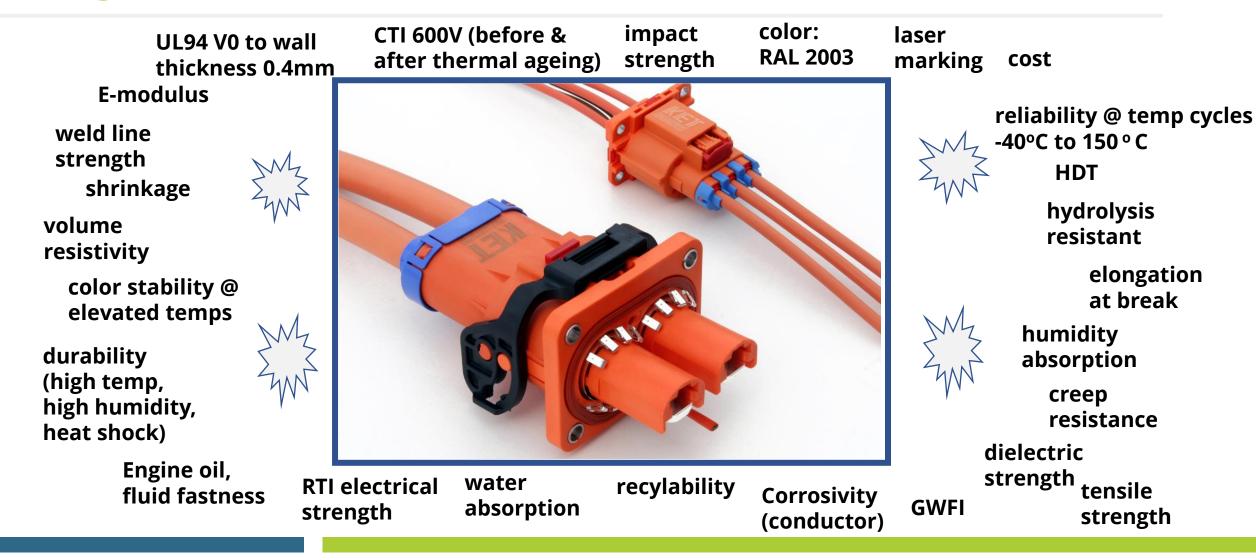
pinfa na MANY DIFFERENT CHEMISTRIES CAN ACHIEVE FLAME RETARDING EFFECTS



- different physical/chemical properties, environmental fate, toxicology, and regulatory status
- additive & reactive FRs, solid & liquid forms
- dosage of flame retardants typically is much higher v. other additives: antioxidants, light stabilizers, antistatic agents, lubricants or pigments

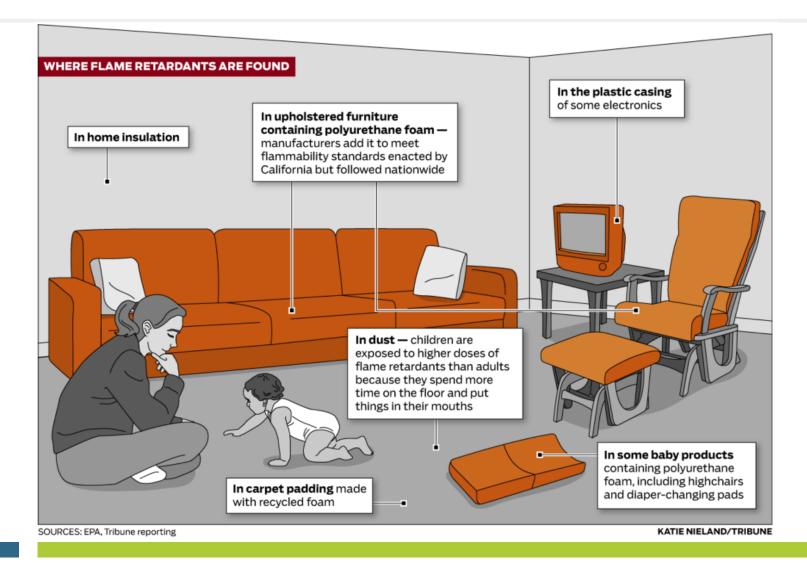
	Type of Flame retar	dant Additive			
	Halogen	Non-Hal	Minerals	35	
				D-	
Amount needed	~13%	~25%	55+ weight %	Br	N
				Bromine	Nitrogen
Primary	Brominated	Phosphates	ATH	79.904	
	Chlorinated	Phosphinates	MgOH	HALOGEN	NITROGEN
	Fluorinated	Polyphosphonate	Nanosilicas	15	1 Anterio
		Polyphosphazene			
			Silicone surface	Phaanharua	ATH
Synergist	ATO	Melamine	treatment	Phosphorus	Sec. 198
		Melamine cpds		30.974 рноsphors	MINERAL- INTUMESCENTS

Non Hal systems are more complex and require a balance of FR and properties


note: *polymeric FR, **reactive FR & *** additive FR

Flame Retardant Additive Types-Evolution

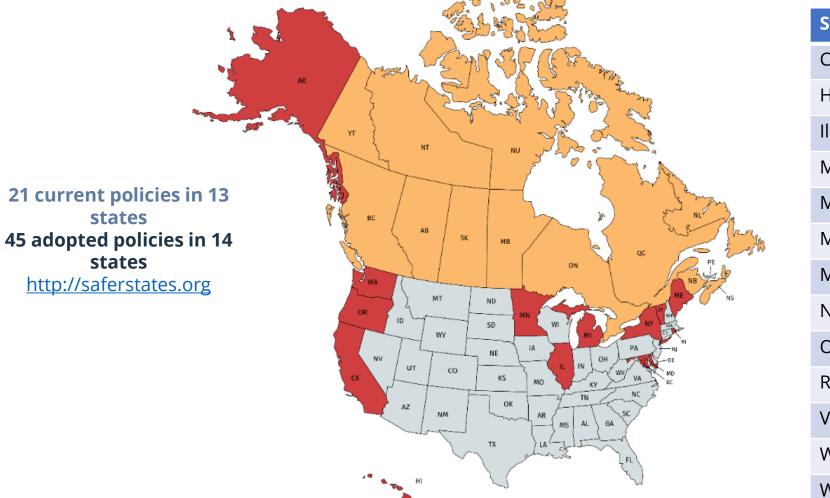
		Market Pre	eference
		Phosphor Based FRs	Halogenated FRs
Iviarket Preierence	Polymeric	 Polyphosphonates Halogen free Do not migrate Favorable toxicity profile. Do not bioaccumulate Melt processable and transparent Deliver more properties than only FR 	 Brominated polymers + Do not migrate from host plastic - Use antimony trioxide as synergist - Formation of dioxins and furans possible at incomplete incineration
	Small Molecules	 Phosphates, phosphinate salts, DOPO, Nitrogen FRs Halogen free Can migrate from host plastic Can negatively affect thermal and mechanical properties of host plastic (act as plasticizer) Some Environmental concerns Minerals- ATH, Mg OH2- Often at levels needed impact polymer properties 	


Phosphorus, Inorganic & Nitrogen Flame Retardants Association

pinfa na **REQUIREMENTS: FR RESIN FOR HIGH VOLTAGE EV CONNECTOR

*Flammability *Cost *Color & Appearance *Mechanical *Regulatory/EHS *Electrical *Processing

SOCIETAL CONCERNS: .. MAINLY EH&S



- Toxic Substances Control Act (1976)
- Frank R. Lautenberg Chemical Safety Act 21st Century (2016)

- U.S. EPA/Industry agreement voluntary phase-out of FR mfg w/in U.S.: PentaBDE (2004), OctaBDE (2004) & DecaBDE (2013)
- U.S. EPA Design for Environment Alternative FR Assessment Studies: F-PUR foam(2005), DecaBDE(2014), HBCD(2014), PCBs(2015), F-PUR foam*(2015)
- U.S. EPA workplan 7 FRs (2012). Planning process risk assess. 3 clusters 10 FRs (2015). MARCH 2019 (US EPA): TCEP, TBBPA & TPP -- "high priority substance" candidate for RA.
- U.S. CPSC grants organohalogen petition (2017). NAS study complete (2019)
- U.S. CPSC decision (2019): TB 117-2013 as national STD for upholstered furniture

LOCAL LAW ON BOOKS THAT REGULATE SPECIFIC FR CHEMICALS

IN CERTAIN CONSUMER PRODUCTS - 2019

pinfa-na

State/district	law (ref.)
California	HB 53
Hawaii	H 1245, LD 182
Illinois	HB 2572
Maine	LD 182, HP 138
Maryland	HB 206
Michigan	HB 4406
Minnesota	HF 1627
New York	A 3388, S 742
Oregon	SB 596
Rhode Island	H 5082
Vermont	ACT 61
Washington	ESHB 2545
Wash. DC	B21-143

pinfa-na STATE OF CALIFORNIA TAKES LEAD...

Year	Law/Regs /Reqs	Scope
1986- 2019	PROP 65	LABELING (products, workplaces, businesses, rental housing) : "chemicals known to CA to cause cancer or reproductive toxicity" (TDCPP, TCEP, TDBPP)
2013	TB117-2013	REPEAL FIRE TEST (residential furniture): Replacement of TB117 -1975 "open flame" with less rigorous "smolder" test requirement (TB117-2013).
2013	AB 127	FIRE TEST (building insulation): requires CA Fire Marshall to "review" flammability standards of building insulation materials (re. necessity of "FRs").
2014	SB 1019	LABELING (upholstered furniture) : requirement to inform public whether FR chemicals were added to a covered product or component.
2017	City SF Ord. No. 211-17	BAN/RESTRICITION FR CHEMICALS (upholstered furniture, juvenile products): prohibits the sale of products that contains or is made with a flame retardant chemical at a level above 1,000 parts per million.
2018	CalSafe Work Plan	SAFER ALTERNATIVES ASSESSMENT (household/school/workplace furnishings & décor, building products & materials). Three year priority workplan in place (w/numerous FRs included on CA DTSC "chemical candidate" list).
2018	AB 2998	Ban/Restriction FR CHEMICALS (juvenile products, upholstered furniture, mattresses). As of 1/1/20; FRs halogenated, organophosphorus, organonitrogen, nanoscale @ >1,000 ppm.
2019	BEARHFTI OMN 2018-1210-03S	REPEAL FIRE TEST (FURNITURE – PUBLIC OCCUPANCY – prisons, nursing home, daycare, hospitals, auditoriums, hotels). Replacement "open flame" TB 133 to less rigorous TB116/ TB117-2013.
2019	CBSC SFM 02/18	AMENDED BLDG STDs CODE : Allows non-FR treated foam insulation below grade.

- Canadian Environmental Protection Act CEPA (1999)
- Chemical Management Plan CMP (2006) melamine, tricresyl phosphate (TCP), Dechlorane Plus (DP), TCPP, TDCPP, EBTBP, ATE (BFR), DBDPE, TBB, TBPH, ATO - Sb₂O₃
- PBDE Regulations: pentaBDE/OctaBDE (2008)
- Canada Consumer Product Safety Act CCPSA (2010)
 TCEP (foam products children), TDBPP (textile wearing apparel)
- Prop. Amendments "Prohibition of Certain Toxic Substances" (2018) HBCD,PBDEs(7),Dechlorane Plus & Decabromodiphenyl ethane*

* <u>2019 update</u>: Per Canadian authorities - DBDPE may contribute to the formation of persistent, bioaccumulative, and inherently toxic transformation products, such as lower brominated BDPEs, in the environment. A **ban** on the manufacture, sale or import of the brominated FR DBDPE has been proposed.

OEM REQUIREMENTS, ECOLABELS & FRS

Consumer Electronic OEM example*:

Apple Regulated Substances Specification 069-0135-K

We've eliminated harmful chemicals like mercury, brominated flame retardants, PVC, phthalates, and beryllium from our products.¹

Ecolabels:

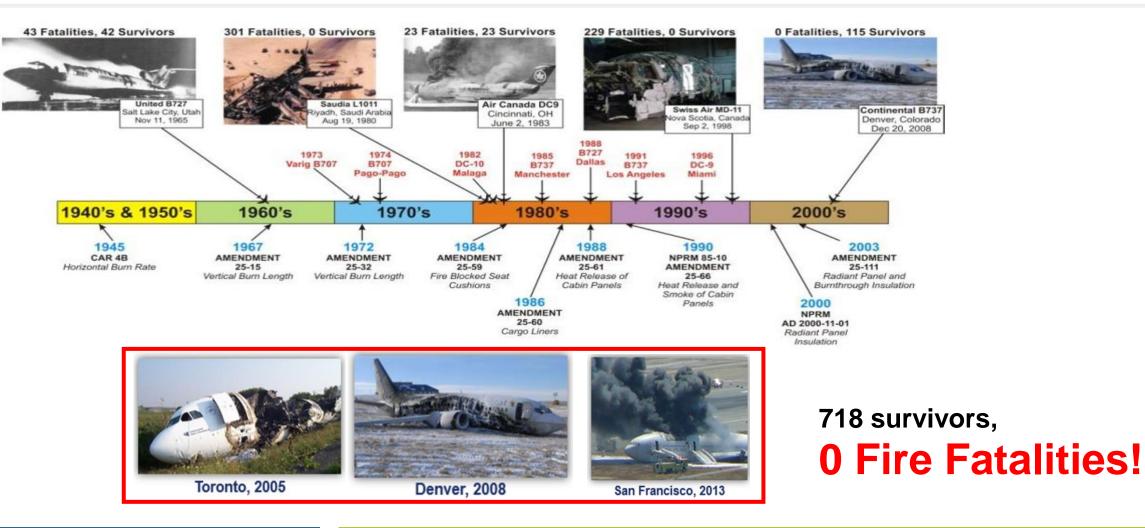
The EPEAT ecolabel empowers purchasers to meet their organizational sustainability goals through their purchasing decisions. Products available through EPEAT include computers, monitors, copiers, mobile phones, televisions, and servers. EPEAT is just one of several sustainable purchasing resources freely available from the Green Electronics Council (GEC).

- Some ecolabels have restrictions on halogenated flame retardants.
- TCO introduced list of approved halogen free flame retardants = white list

REAL LIFE EVOLUTION OF A FIRE TEST STANDARD

I. Engineered wood I-beams developed during 1960s (used now in ~50% of new residential construction)

II. Several firefighter deaths due to unexpected collapse of floors during fire incidents


ASTM E119

III. 2012: International Residential Code change!!

i-Joist w/FR protective coating

pinfa-na ENHANCED INTERIOR MATERIAL FIRE SAFETY

Source: U.S. Federal Aviation Administration

pinfa-na 3RD PARTY ALTERNATIVES ASSESSMENT EXAMPLE

Risk = **hazard** x exposure (dose)

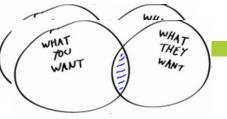
II. GreenScreen[®] Hazard Summary Table[™] (chemical example)

Group I Human					Group II and II* Human									Ecotox		Fa	Fate		Physical	
C	М	R	D	E	AT		ST		N		SnS*	SnR*	IrS	IrE	AA	CA	Р	В	Rx	F
						SING	LE	REPEATED*	SINGLE	REPEATED*										
н	H	н	н	М	L	Vi		н	м	н	L	L	н	н	H	н	vL	vL	L.	н
С	Carcinogenicity SnR Respiratory Sensitization				SnS	Skin Sensitization					vH	H Very High								
м	Mutagenicity/Genotoxicity IrS Human Skin Irritation/Corrosivity				CA	Chronic Aquatic Toxicity					н	High								
R	R Reproductive Toxicity IrE Human Eye Irritation/Corrosi					sivity	Ρ	Persistence in the Environment					м	Med	Medium					
D	Develop	Developmental Toxicity AA Acute Aquatic Toxicity				В	Bioaccumulation in the Environment					L	Low	Low						
Е	Endocrir	e Activ	/ity			ST	ST Human Systemic Toxicity			Rx	Physical Reactivity					vL	Very Low			
AT	Human /	man Acute Toxicity N Neurotoxicity				F	Flammability					DG	i Data Gap							

<u>GreenScreen® for Safer Chemicals Benchmarks</u> **Benchmark 4** = Preferred **Benchmark 3** = Use but Still Opportunity for Improvement **Benchmark 2** = Use but Search for Safer Substitute **Benchmark 1** = Avoid – Chemical of High Concern

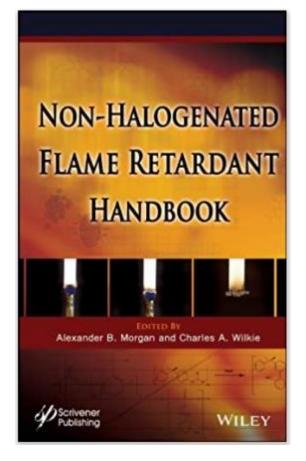
OPPORTUNITIES FOR SUPPLIERS & OEMs TO PROVIDE MORE SUSTAINABLE FR MATERIALS (EXAMPLES)

- polyisocyanurate building insulation
 Better insulation properties
- interior automotive
 E-Mobility

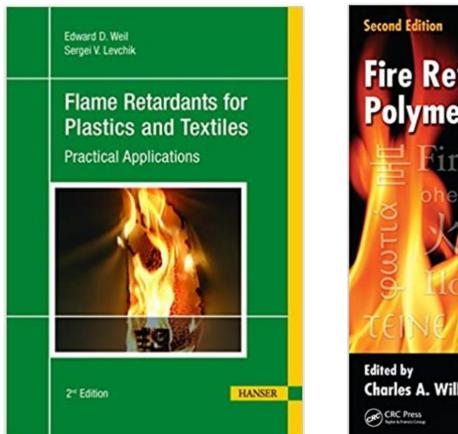

- children's car seats Increased safety
- electronic enclosures
 Greener electronics
- firefighting foam (containing PFAS)

SUMMARY

- FR R&D should be focused on market needs and solutions.
- Stakeholders have a strong voice in influencing change.
- North American law and regulations (re: FRs) will continue to undergo incremental change over next decade.
- There exists a fire safety paradox... Industry must improve its communications concerning the benefits of FR materials to our modern society.
- Industry must strive to offer more sustainable solutions supported by 3rd party EHS data.



THANK YOU FOR YOUR ATTENTION!



<u>Acknowledgement</u>: Clariant Corporation USA, pinfa-NA, pinfa EU, pinfa China, A. Worku PhD (FR Advisers LLC) & K. Shen PhD (FR International LLC), Avakian Polychem Consulting, Maggie Baumann (FRX Polymers, Performance Polymers and Additives LLC) contact info: timothy.reilly@clariant.com; mbaumann@frxpolymers.com

RESOURCE BOOKS

A. Morgan, C. Wilkie, Wiley 2014

E. Weil, S. Levchik, Hanser 2016

Copyrighted Material Fire Retardancy of Polymeric Materials 1re ume zjarri Charles A. Wilkie • Alexander B. Morgan **Copyrighted Material**

C. Wilkie, A. Morgan, CRC Press 2010

Please visit pinfa.org